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Resumo

Este trabalho de conclusão de curso foi desenvolvido no laboratório Tanque

de Provas Numérico (TPN) da Escola Politécnica da USP. O objetivo foi criar um am-

biente imersivo de simulação capaz de integrar duas funcionalidades já desenvolvidas

no laboratório: a simulação de processos complexos de movimentação de corpos

flutuantes sob diversas condições climáticas e a geração de uma visualização da mo-

vimentação destes corpos flutuantes simulados.

Para isto, foi adquirida uma plataforma do tipo Hexapod capaz de mover-se

em seis graus de liberdade. O trabalho, então, era o de criar duas interfaces: uma

com a plataforma e outro com o software desenvolvido e desenvolver um software

intermediário para o tratamento dos dados recebidos do TPN para envio à plataforma.

A interface com o software TPN requeria uma comunicação com protocolo

NMEA a uma frequência de 2Hz. Já a comunicação com a plataforma requeria co-

municação socket usando protocolo UDP e uma frequência de 60Hz. A diferença nas

frequências de envio e recebimento criou a necessidade de se desenvolver um algo-

ritmo de extrapolação da série temporal recebido e nova discretização para envio à

plataforma, com o menor prejuízo possível para a qualidade da série temporal.

Para este fim, foram testados diversos algoritmos de extrapolação, iniciando

por algoritmos mais simples como o Zero Order Hold e o First Order Hold até algorit-

mos mais complexos, que calculavam o resíduo entre a posição esperada e a posição

atual e reduziam este resíduo nos próximos passos de simulação além de integrar a

aceleração e velocidades obtidas para extrapolação fiel ao movimento esperado na

janela de tempo entre o recebimento de novos dados. A escolha do algoritmo foi ba-

seada no tempo de cálculo de cada um e na capacidade de reproduzir o movimento

real do corpo flutuante obtido através da simulação nos clusters do TPN.

Para o cálculo da janela temporal entre o envio dos dados, foi desenvolvida

uma rotina de temporização especial. Esta rotina é capaz de manter a CPU ocupada

e aguardar, com boa precisão, o momento para envio dos dados. Uma simples aná-

lise estatística foi realizada para mostrar que a rotina era eficiente e atingia os requisi-

tos pré-estabelecidos, mesmo utilizando um sistema não desenvolvido especialmente

para aplicações real time.

Finalmente, o envio de dados foi realizado utilizando o protocolo UDP, simples

e leve, ideal para situações onde a temporização é muito importante e onde a perda de

um pacote (pois o UDP não é 100% confiável) não afeta drasticamente a performance

do sistema.
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Abstract

This work was developed in the headquarters of the Numerical Offshore Tank

(TPN) laboratory located in the Universidade de Sao Paulo. The aim was creating an

imersive simulation environment capable of integrating two main functionalities previ-

ously developed in the TPN: the simulation of complex offshore operations under sev-

eral environmental conditions e the generation of a visualization of those simulations.

To achieve this objective, a Hexapod type platform capable of moving in six

degrees of freedom was purchased. The work was then reduced to creating two inter-

faces: one with the TPN simulation software and the other with the platform. Besides,

it was necessary to develop a software to treat data received from the TPN to send

them correctly to the platform.

The TPN software interface was developed with a NMEA protocol communi-

cation at a 2Hz frequency. On the other hand, the communication with the Hexapod

platform required a socket communication with UDP protocol at a frequency of 60Hz.

This difference between the frequency in input and output made it necessary to de-

velop an interpolation algorithm to treat the data received and discretize it at 60Hz to

send to the platform, trying to maintain the quality of the time series.

In order to do that, several interpolation algorithms were tested, beggining with

simple ones such as Zero Order Hold and First Order Hold until more complex ones,

that would calculate the residuals between the real position of the platform and the

desired position sent by the TPN software every time that a new package arrived and

reduce this residuals until the next package would arrive. The choice of the bedt algo-

rithm was based in the calculation time for each one of them and on the capability of

reproducing the real movement of the simulated body even with low frequency of input

communication.

To calculate the time window to send packages to the platform, it was devel-

oped a special purpose timer routine. This routine could maintain the CPU occupied e

wait, with very good precision, the right moment to send the data. A simple statistical

analysis was made to show that the developed code was efficient and satisfied the

necessary pre-requisites, even working in a non-real-time operating system (Windows

7).

Finally, the code to send data using UDP protocol was developed. UDP is a

simple and light protocol, well-suited for applications with strong time constraints and

where eventual package losses will not affect drastically the performance of the system.

Keywords: Mechatronics, Real-Time, Simulation
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Capítulo 1

Introdução

1.1 Motivação: O Tanque de Provas Numérico

A construção do prédio do Tanque de Provas Numérico (TPN-USP), em par-

ceria com a Petrobras, abriu portas para o desenvolvimento de diversos projetos tec-

nológicos na área de Engenharia Naval e Oceânica na Escola Politécnica. Diversos

professores, alunos de graduação e pós-graduação e outros pesquisadores trabalham

no laboratório em projetos de excelência na área de Engenharia Naval, rompendo bar-

reiras de conhecimento e interagindo também com outras áreas da engenharia, como

a Mecânica e a Mecatrônica.

O TPN é um laboratório pioneiro em hidrodinâmica aplicada, fruto de uma

colaboração entre a Petrobras e as principais instituições de ensino do país, dentre

elas a Escola Politécnica da USP. Seu principal objetivo é atuar como parceiro da

indústria offshore e de petróleo e colaborar para a obtenção da auto-suficiência da

produção de petróleo nacional como uma poderosa ferramenta para projeto e análise

de sistemas flutuantes de produção de óleo e gás.

Um sistema offshore tipicamente consiste de um ou mais corpos flutuantes

ancorados por diversas linhas de amarração e risers (que são dutos para extração de

petróleo) sob as mais diversas condições ambientais.

Atuando de maneira complementar a um tanque de provas convencional, o

TPN pode executar ensaios gerando basicamente as mesmas variáveis, mas em um

modo mais veloz e econômico. Cada experimento produz dados não somente da

série temporal de cada variável analisada, mas também uma estimativa de valores

extremos, distribuição de probabilidades, análise do domínio espectral, entre outros.

O núcleo do TPN é um cluster de computadores (120 processadores atual-

mente, expansível até 400 processadores), que é hoje um dos maiores agrupamentos

do Brasil para fins de pesquisa. Além do núcleo numérico o TPN tem conduzido pes-
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quisa e desenvolvimento em computação gráfica sobre diversas plataformas, sendo

esta agora a segunda grande linha de trabalho do laboratório.

Dentre os projetos desenvolvidos no laboratório está a criação de uma sala de

realidade virtual para simulação dos movimentos semelhante aqueles experimentados

a bordo de um navio, conforme mostra a figura 1.1. Esta sala é equipada com 44

poltronas confortáveis, um sistema de projeção de imagens em três dimensões e uma

plataforma do tipo Hexapod com 4 poltronas montadas em sua superfície superior.

O sistema é chamado "4D", pois além da sensação de tridimensionalidade

proporcionada pela projeção, o usuário ainda tem a sensação do movimento dos na-

vios gerada através da plataforma Hexapod.

Figura 1.1: Sala de visualização do TPN

O sistema de projeção de imagens é baseado no principal software do labo-

ratório, também chamado de TPN. A estrutura de simulação do TPN é baseada na

discretização temporal do comportamento dinâmico do sistema flutuante, em particu-

lar os navios e plataformas, sob a ação de esforços externos decorrentes de condições

ambientais, como corrente, vento e ondas, da dinâmica das linhas - amarração e ri-

sers - ou da interação entre corpos múltiplos, também conhecido como efeito sombra.

O simulador é capaz de realizar uma análise acoplada de todos estes parâmetros,

gerando elevada performance, agilidade e economia no processo de análise e desen-
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volvimento de sistemas flutuantes. Um exemplo de visualização gráfica de plataforma

e amarrações em simulações pode ser visto na figura 1.2.

Figura 1.2: Simulação de plataformas TPN

Como resultado das simulações, o software produz as variáveis de posição,

velocidade e aceleração dos seis graus de liberdade do corpo flutuante simulado, que

são usadas como entrada para o sistema de geração e projeção de imagens, conforme

pode ser observado na figura 1.3.

Figura 1.3: Interface gráfica do software TPN

Desta maneira, diversos experimentos podem ser conduzidos. Em especial

a simulação de processos extremamente complexos da indústria petroleira, como o
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procedimento de alívio das plataformas, onde o navio aliviador pode se aproximar

muito da plataforma, com riscos de colisão ou rompimento dos cabos que retiram o

petróleo, dependendo das condições climáticas, como velocidade dos ventos, valores

de corrente e tamanho das ondas. Com esta visualização, se permite a observação

em uma maneira muito mais próxima à real de uma operação do gênero.

Além disso, o conjunto plataforma/sistemas de projeção pode ser simulado

para testes de conforto no interior das embarcações. É muito comum que pessoas

se sintam mal ao fazer viagens utilizando navios, em especial devido aos movimentos

de rotação periódica da embarcação. Para testar estes efeitos e tentar reduzir a sen-

sação de mal-estar, simulações podem ser conduzidas utilizando-se da estrutura de

simulação de movimento de embarcações.

Uma outra aplicação do sistema é o treinamento ou reciclagem dos responsá-

veis por conduzir os navios aliviadores da Petrobras, que trazem para o continente o

petróleo produzido pelas plataformas marítimas. É possível, utilizando os simuladores

já desenvolvidos no TPN, fazer ensaios com diversos navios plataformas da empresa,

como a P-35 e a P-51, instaladas na bacia de Campos.

Através das variáveis de saída do programa, foi concebida a ideia de repro-

duzir os movimentos em escala em uma plataforma de dimensões médias (capaz de

ser montada dentro de uma sala de aula), de maneira a simular o movimento do na-

vio, com ênfase nos movimentos de rotação de pitch, isto é, rotação sobre o eixo

transversal do corpo e roll, rotação sobre o eixo longitudinal do corpo, aumentando a

percepção de realidade virtual em um ambiente imersivo.

Este trabalho de conclusão de curso é baseado no desenvolvimento de um

software que atue no recebimento e tratamento de dados do software TPN, isto é,

as informações sobre posição, velocidade e aceleração das variáveis de roll e pitch,

utilizando o protocolo NMEA; no tratamento destes dados utilizando algoritmos para

extrapolação e garantia de continuidade nos movimentos, através da linguagem C++;

na programação e configuração da plataforma descrita previamente e no envio dos

dados tratados, utilizando comunicação socket e protocolo UDP.

1.2 A plataforma Hexapod

A plataforma do tipo Hexapod é um equipamento de seis graus de liberdade.

A plataforma possui seis pernas que podem alterar seus comprimentos de acordo

com os comandos enviados a cada um dos seus atuadores (um para cada perna), um

exemplo deste tipo de plataforma pode ser visto na figura 1.4.

Esta plataforma é extremamente versátil e permite a reprodução de movimen-
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Figura 1.4: Plataforma tipo Hexapod (www.quanser.blogspot.com.br)

tos em seis graus de liberdade, isto é, permite o deslocamento nos eixos x, y e z,

além de permitir as rotações de Roll (rotação ao redor do eixo longitudinal do corpo),

Pitch (rotação ao redor do eixo transversal do corpo) e Yaw (rotação em torno do eixo

vertical passando pelo corpo).

Através de uma matriz de transformação de coordenadas, a movimentação

nos graus de liberdade descritos acima pode ser obtida através de um comando ade-

quado enviado aos atuadores da plataforma. Dois exemplos simples são:

• Translação no eixo z:

Para efetuar uma translação no eixo z, basta enviar um comando aos atuadores

para aumentar o comprimento li, com i = 1, 2, ..., 6 para cada uma das pernas do

mecanismo de um valor d. É fácil notar que tal comando criará um movimento

no eixo z do mecanismo, também conhecido como movimento de Heave.

• Rotação de Yaw :

Para obter uma rotação de Yaw, isto é, uma rotação ao redor do eixo vertical

que passa pela plataforma, basta enviar um comando de extensão de um valor d

aos atuadores que comandam o comprimento das pernas alternadas, alterando

o valor dos comprimentos li, com i = 1, 3, 5 e, ao mesmo tempo, enviar um

comando de retração às demais pernas do mesmo valor d. Nota-se também,

que estes comandos simultâneos geram uma rotação ao redor do eixo vertical

da plataforma, ou rotação de Yaw.
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Com a devida notação matricial, que será exposta mais adiante, pode-se cal-

cular o efeito de qualquer alteração de comprimento di na perna li no sistema de

referência fixo. Da mesma forma, para qualquer movimento de translação e rotação

desejados, pode-se calcular qual o comprimento de cada uma das pernas do meca-

nismo necessário para possibilitar tal movimentação.

1.3 Comunicação com os equipamentos industriais e

software

O presente trabalho de conclusão de curso prevê a integração entre dois ato-

res: o software TPN e uma plataforma de simulação de movimentos do tipo Hexapod.

Para este fim, é necessário conhecer a fundo como ocorre a comunicação com cada

um desses dois elementos. Um esquema da solução proposta para este escopo é

mostrada na figura 1.5.

Figura 1.5: Esquema da solução proposta

No caso do software TPN, o programa exporta dados em uma determinada

frequência, usando protocolo NMEA, típico de aplicações navais, como ecos, sonares

e o GPS. Atualmente, o padrão utilizado é o NMEA 0183 que tem a tendência de ser

substituído pelo NMEA 2000 nos próximos anos.

Já para a comunicação com a plataforma Hexapod o protocolo utilizado é do

tipo UDP, usando as especificações do fabricante da plataforma, a Moog, Inc.

O software desenvolvido neste trabalho é capaz de obter os dados do TPN,

tratá-los e interpolá-los afim de enviar dados à plataforma na frequência especificada

pela fabricante com o intuito de manter uma suavidade no movimento e maximizar a
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sensação de realidade virtual em um ambiente imersivo. Além disso, os erros entre

posição desejada e posição medida devem ser minimizados a cada instante.

Por fim, o algoritmo desenvolvido neste trabalho visa minimizar as desconti-

nuidades obtidas quando um novo dado de posição do TPN é recebido, distribuindo o

erro entre posição atual e nova posição recebida nos próximos envios de dados até o

recebimento de uma nova posição do TPN.
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Capítulo 2

O projeto

2.1 Especificações e requisitos de projeto

Como um projeto de engenharia, o presente trabalho possui diversas restri-

ções, limitações e especificações. Neste caso, as especificações dizem respeito a:

• Comunicação com o software TPN sem alteração das especificações pré-

existentes para este projeto

Esta especificação implica que o projeto desenvolvido não pode alterar as espe-

cificações do TPN. Isso inclui, especialmente, a plataforma de desenvolvimento

(uso de Windows), temporização de recebimento de informações (pacotes rece-

bidos com frequência de 2Hz) e código com capacidade de integração ao soft-

ware TPN.

• Temporização para envio de pacotes à plataforma Hexapod

O PLC presente na plataforma de 6 graus de liberdade requer envio de pacotes

a uma frequência de 60Hz. Uma das grandes restrições deste projeto, então, é

o tratamento dos sinais e envio das informações dentro da janela de tempo pré-

estabelecida, isto é, um período máximo de aproximadamente 16,6 ms. Todos os

cálculos presentes na rotina de comunicação, assim como as próprias funções

de envio e recebimento de dados da plataforma devem ser executados dentro

desta janela temporal.

• Protocolo de comunicação com a plataforma

Ainda como imposição devido ao PLC presente na plataforma Hexapod, a comu-

nicação entre esta e o software desenvolvido neste projeto deve ser do tipo UDP

(User Datagram Protocol). Apesar de o TCP (Transmission Control Protocol) ser

uma alternativa viável, mais segura e confiável (não obstante seja mais lento).
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Devido a este requisito, eventuais mecanismo de verificação da integridade de

dados, confirmação de recebimento ordenado e correto dos pacotes e outros

mecanismos devem ser desenvolvidos utilizando o protocolo UDP.

• Máxima sensação de imersão na reprodução dos movimentos

Este requisito de projeto implica que os movimentos que geram a sensação de

imersão devem ser reproduzidos integralmente. Neste caso, os movimentos de

deriva, isto é, aqueles movimentos mais lentos que não geram acelerações signi-

ficativas, como os movimentos de translação no plano em um navio (em especial

nos eixos x e y), não precisam ser reproduzidos. Por outro lado, os movimentos

de rotação ao longo do eixo longitudinal do corpo (Roll) e de rotação ao longo

do eixo transversal do corpo (Pitch), devem ser reproduzidos integralmente, por

serem essenciais para a simulação da sensação de estar a bordo de um navio.

• Continuidade dos movimentos

A diferença entre a frequência de recebimento dos dados e envio dos mesmos

através do software desenvolvido neste trabalho traz, intrinsecamente, uma ne-

cessidade de extrapolação dos dados recebidos para envio à plataforma. Esta

extrapolação, contudo, deve estar de acordo com a realidade da movimentação

de um navio. Como as forças que atuam no navio, através da lei da terceira

lei de Newton (F = ma), produzem uma aceleração no corpo, e a primeira de-

rivada dos graus de liberdade é a integração destas acelerações, isto implica

que as velocidades são contínuas. Da mesma forma, as posições dos graus de

liberdade também devem ser contínuas. Por essas razões, na reprodução dos

movimentos, isto é, na escolha dos algoritmos de extrapolação que geram as

posições enviadas à plataforma, requer-se que ao menos a série temporal de

posição enviada à plataforma deva ser contínua.

• Movimentação em tempo real

O movimento produzido pela plataforma deverá reproduzir a sequência de dados

recebidos através do software TPN em tempo real. Isto significa que o tratamento

dos dados deve ocorrer online e os algoritmos de controle devem usar somente

os dados já recebidos através da comunicação com o TPN. Por determinação

das especificações de projeto, o atraso entre a reprodução do movimento na

plataforma e o recebimento dos dados deve ser mínimo, não permitindo a imple-

mentação de algoritmos de controle que necessitem do conhecimento de toda a

série temporal para efetuar os cálculos (implementação típica de algoritmos de
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controle offline). Essa especificação restringe significativamente a quantidade

de algoritmos a serem analisados.

O objetivo final deste último requisito é o de a projeção tridimensional ser sem-

pre sincronizada ao movimento gerado na plataforma de seis graus de liberdade.

Eventuais atrasos gerariam um efeito de dessincronização que é altamente in-

desejável para a qualidade do trabalho realizado.
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Capítulo 3

Metodologia

3.1 Ambiente de simulação

O ambiente de desenvolvimento utilizado neste trabalho é o Microsoft Visual

Studio [2] e o sistema operacional utilizado é Windows. A escolha de tais plataformas

é baseada no desenvolvimento prévio dos programas do TPN, que se utilizam de

Windows, evitando o conflito de sistemas operacionais e permitindo a portabilidade

como um todo do software desenvolvido neste trabalho junto com o TPN. Além disso,

a Microsoft fornece ótimas bibliotecas para a gestão de comunicação UDP, que são

amplamente utilizadas neste trabalho.

O Visual Studio é um ótimo ambiente para o debug do programa desenvolvido.

Sua interface é amigável ao usuário e, ao mesmo tempo, permite o desenvolvimento

de programas complexos. Além disso, oferece completo suporte à linguagem C++,

utilizada neste trabalho. Estas são as principais razões para a escolha desta IDE

(Integrated Development Environment) para este projeto. O ambiente de trabalho do

Visual Studio pode ser visto na figura 3.1.

O Windows é sabidamente um sistema operacional que não foi desenvolvi-

dos para aplicações Hard Real Time (no qual o desrespeito às imposições temporais

pode prejudicar seriamente o funcionamento do sistema). Para este escopo, existem

sistemas operacionais específicos, como o VxWorks. No entanto, para esta aplica-

ção onde a perda eventual de uma deadline é aceitável e o requisito temporal não é

extremamente justo (Soft Real Time), a utilização de Windows com o software sendo

executado em alta prioridade - inclusive existe a opção de rodar um aplicativo em

tempo real - e uma rotina de medição de tempo de alta precisão são suficientes para

atingir os objetivos esperados.

O principal fator, no entanto, para a tomada da decisão a respeito do sistema

operacional, como explicado anteriormente, é a integração com o desenvolvimento
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Figura 3.1: Ambiente de simulação do Microsoft Visual Studio

anterior do software TPN.

3.2 Comunicação com o software TPN

Para a comunicação com o software de simulação de embarcações TPN, a

metodologia é baseada na análise do programa, em especial das variáveis de saída do

programa. As variáveis de interesse para este trabalho são os graus de liberdade de

rotação, em especial os valores de Roll e Pitch, assim como as respectivas derivadas

primeira e segunda.

As saídas do programa podem ser acessadas lendo-se as mensagem produ-

zidas pelo TPN, baseadas no protocolo NMEA [3].

O ambiente de simulação para o programa desenvolvido será o Microsoft Vi-

sual Studio [2]. Através do Visual Studio, poderá ser feito o debug das informações

recebidas para conferência com os dados esperados. Para o debug, será criado um

struct com os valores obtidos e que vem atualizado conforme os dados são recebidos

do TPN.

Após esta fase, os dados estarão prontos para serem tratados dentro do soft-

ware desenvolvido neste trabalho.
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3.3 Tratamento dos dados e minimização dos erros

Para o tratamento e minimização de dados, o livro usado foi o [4]. Técnicas

de controle digital, amostragem, algoritmos de Zero Order Hold e First Order Hold

foram consultados nesse livro para desenvolvimento da técnica de extrapolação de

dados recebidos e um algoritmo modificado, descrito mais adiante neste trabalho, foi

utilizado para o envio de dados à plataforma Hexapod.

3.4 Comunicação com a plataforma Hexapod

Para a comunicação com o a plataforma Hexapod o protocolo utilizado é o

UDP (User Datagram Protocol), que será descrito em detalhes posteriormente. É um

protoclo mais rápido e leve que o TCP e pode ser usado em aplicações onde a tempo-

rização é essencial e a perda de um pacote não diminui drasticamente a performance

do sistema.

Como referência para a comunicação utilizando UDP, foi usado o livro [5].

A plataforma de desenvolvimento é o Microsoft Visual Studio [2] do software

deste trabalho, em especial por ser a plataforma de desenvolvimento padrão no labora-

tório TPN e, por esse motivo, facilitar eventuais upgrades, atualizações e modificações

posteriores no código e no programa por parte de estudantes que no futuro venham a

continuar este trabalho.

Os dados devem ser enviados de acordo com as especificações do fabricante

da plataforma Hexapod, a empresa Moog, Inc. Estas especificações incluem formato

dos dados, configurações iniciais, precisão e frequência de envio. Estas especifi-

cações também serão discutidas nos próximos capítulos deste trabalho. Caso estas

especificações não sejam respeitadas, a plataforma não se movimenta de acordo com

o previsto e a sensação de imersão no ambiente do navio pode ser reduzida ou até

mesmo anulada.

Sintetizando, existem três requisitos principais para a comunicação com a pla-

taforma. A primeira diz respeito ao formato dos dados, que devem respeitar um padrão

pré-estabelecido para serem interpretados corretamente pelo PLC instalado na plata-

forma. O segundo diz respeito à forma de comunicação, utilizando protocolo UDP.

E, finalmente, o terceiro requisito que especifica a temporização da comunicação,

estabelecendo uma frequência específica de 60Hz que caso não venha respeitada,

prejudica a continuidade do movimento.
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Capítulo 4

Bases teóricas

4.1 Cinemática do mecanismo Hexapod

Este trabalho de conclusão de curso baseia-se na comunicação com um equi-

pamento industrial do tipo plataforma Hexapod. Uma visão mais detalhada do me-

canismo pode ser observada na figura 4.1 e um desenho esquemático para gerar as

equações de cinemática do mecanismo em 4.2, conforme [1].

Figura 4.1: Fotografia detalhando o mecanismo da plataforma utilizada

A partir do desenho esquemático, é possível fazer a transformação de coor-

denadas saindo da base de comprimento de cada uma das seis pernas da plataforma

Hexapod para os graus de liberdade de rotação (Roll, Pitch e Yaw), que atendem às
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Figura 4.2: Desenho esquemático de uma plataforma Hexapod (retirado de [1])

necessidades deste trabalho. Os vetores ~Ai que unem a base superior do mecanismo

à superior - representando as pernas do mecanismo - podem ser descritos da seguinte

maneira, conforme [6]:

Para i = 1, 2, ..., 6 :

~Ai = ~ti + [T ] ∗ ~pi (4.1)

onde:

~ti = O2 −O1;

O2 é a origem do sistema móvel de coordenadas;

O1 é a origem do sistema fixo de coordenadas.

O vetor ~ti é a translação entre os sistemas de coordenada, e representa as

variáveis de deslocamento nos eixos x, y e z e que possuem analogia direta com os

movimentos de Heave, Surge e Sway que se deseja reproduzir.

Já a segunda parcela do lado direito da equação 4.1 representa a rotação do

mecanismo através da matriz de rotação [T]. Esta matriz pode ser descrita através dos
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ângulos de rotação de roll, pitch e yaw, conforme a equação:

[T ] =


cosΘcosψ sinϕsinΘcosψ − cosϕsinΘ cosψ + sinϕsinψ

cosΘsinϕ sinΘsinϕsinψ + cosΘcosψ cosϕsinΘsinψ − sinϕcosψ

−sinΘ sinϕcosΘ cosϕcosΘ

 (4.2)

Essa matriz é obtida simplesmente projetando os eixos rotacionados sobre o

eixo original fixo.

Já os vetores ~pi representam as coordenadas das juntas das pernas com a

base superior do mecanismo em relação à base de coordenadas móvel, que é aquela

cuja origem se encontra no centro da plataforma superior.

As rotações de roll, pitch e yaw são definidas como:

1. Rotação de um ângulo ψ ao redor do eixo z fixo é definido como ângulo de yaw.

2. Rotação de um ângulo Θ ai redor do eixo y móvel, obtido após a rotação do

passo anterior, é definido como ângulo de pitch.

3. Finalmente, uma rotação de um ângulo ϕ ao redor do novo eixo x, obtido após o

passo anterior, é definido como ângulo de roll.

Ou seja, roll é a rotação em torno do eixo longitudinal do corpo, pitch é o

ângulo que mede a rotação em torno do eixo transversal do corpo e o yaw é o ângulo

de rotação em torno a eixo fixo na terra que aponta para cima (eixo Z).

A figura 4.3 mostra em maneira esquemática as rotações do tipo roll, pitch e

yaw.

4.2 Dinâmica das embarcações

Em um primeiro momento, as séries temporais utilizadas em testes prelimina-

res foram senoidais do tipo:

xi(t) = Asen
2 ∗ π
T

t (4.3)

onde:

A é a amplitude da onda senoidal;

T é o período de oscilação da onda senoidal;

t é o tempo;

e xi são os graus de liberdade do navio.
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Figura 4.3: Representação esquemática das rotações de roll, pitch e yaw (Retirado de

http://www.voodoo-world.cz/falcon/agf.html)

Uma descrição mais completa da movimentação de embarcações é discutida

em [7].

O programa TPN envia as saídas para o software desenvolvido neste trabalho

com uma frequência de amostragem de 2Hz, o que implica um período de amostra-

gem Ta = 0, 5s. Por outro lado, devido às especificações do fabricante da plataforma

Hexapod, os dados devem ser enviados ao equipamento com frequência de 60Hz, o

que implica período de amostragem de Ta ∼= 0, 0166s.

Este fato cria a necessidade um tratamento dos sinais recebidos e uma nova

amostragem com a frequência requerida pela plataforma. Além disso, para adequa-

ção do movimento à realidade do movimento de uma embarcação, é necessário um

algoritmo para controlar as descontinuidades na série temporal enviada ao Hexapod.

Este algoritmo será descrido posteriormente neste relatório.
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Capítulo 5

Comunicação com a plataforma
Hexapod

5.1 O protocolo UDP

O UDP (User Datagram Protocol), junto com o TCP (Transmission Control

Protocol), são os protocolos de comunicação usados tipicamente em conjunto com o

IP (Internet Protocol), formando a série de protocolos utilizados em conexões através

da Internet [5].

Ao contrário do TCP, o UDP usa um mecanismo de transmissão extremamente

simplificado, com o intuito de tornar os pacotes UDP - também chamados datagramas -

leves e simples. O UDP não garante que a ordem dos pacotes enviados esteja correta,

que eles não sejam duplicados ou mesmo que eles sejam simplesmente entregues.

Propõe apenas soma de verificação para algum controle da integridade dos pacotes e

uma porta de endereçamento.

As principais características do UDP são:

• Não necessita de conexão;

• Orientado a mensagens;

• Requer menos recursos do sistema operativo;

• Simples e leve;

• Sem mecanismos de garantia de entrega, de ordem ou de duplicação dos paco-

tes ou mecanismos de controle de congestão na rede.

A estrutura dos pacotes UDP é a seguinte:
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offset(bits) 0 - 15 16-31

0 Source Port Number Destination Port Number

32 Length Checksum

64+ Data

Tabela 5.1: Estrutura básica de pacote UDP

5.2 O protocolo TCP/IP

O TCP é um protocolo de comunicação mais confiável que o UDP. Isso porque

possui diversos mecanismos que conferem o pacote de dados enviados.

As principais características do TCP são:

• Orientado à conexão

• Ponto a ponto

• Confiável

• Full duplex

• Garantia de entrega em ordem dos pacotes

• Mecanismo de controle de fluxo de transmissão

Atualmente, o protocolo TCP pode ser estruturado de duas maneiras diversas:

o IPv4 e o IPv6. A origem do IPv6 é devida ao exaurimento iminente dos endereços

de IP da versão 4. A estrutura dos pacotes é mostrada a seguir:
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• IPv4

offset(bits) 0 - 7 8-15 16-23 24-31

0 Source Address

32 Destination Address

64 Zeros Protocol UDP length

96 Source Port Number Destination Port Number

128 Length Checksum

160+ Data

Tabela 5.2: Estrutura básica de pacote UDP usando IPv4

• IPv6

offset(bits) 0 - 7 8-15 16-23 24-31

0 Source Address

128 Destination Address

256 UDP length

288 Zeros Next Header

320 Source Port Number Destination Port Number

352 Length Checksum

384+ Data

Tabela 5.3: Estrutura básica de pacote UDP usando IPv6

5.3 Escolha do protocolo UDP

O UDP é usado em casos nos quais a velocidade de transmissão é um fator

primordial e a falha na entrega de um pacote não acarreta uma falha grave no sistema.

Muitas vezes, em aplicações em tempo real satisfazem esses requisitos e portanto

utilizam o UDP ao invés do TCP.

O software desenvolvido neste trabalho é um exemplo de aplicação onde a

temporização do envio dos dados na frequência de projeto é mais importante do que

a falha na entrega de alguns pacotes esparsos. O PLC da plataforma que recebe os
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pacotes foi programado de maneira que o movimento é tanto suave quanto a tempori-

zação seja respeitada.

Tendo isso em visto, a escolha óbvia diante dos requisitos e restrições de

projeto foi o protocolo UDP.

5.4 A biblioteca Winsock para sockets em Windows

A bliblioteca utilizada para comunicação com a plataforma Hexapod utilizando

UDP será Winsock, cuja documentação está disponível em [8]. Esta biblioteca foi cri-

ada para a utilização de sockets TCP/IP e UDP/IP em Windows. O Winsock ou Win-

dows Sockets API é uma especificação técnica que define e interage entre o sistema

operativo Windows e os serviços de rede.

Utilizando o Winsock, pode-se utilizar funções simples para a comunicação

UDP, como send(), sendto(), recv() e recvfrom(). A comunicação criada neste trabalho

é baseado nestas funções. Parte do código para definir a estrutura de dados e enviá-

los à plataforma é mostrado abaixo:
1
// Inicializar Winsock para comunicacao UDP

3
WSADATA info;

5 WSAStartup ( MAKEWORD (2,2), &info );

7 sock=socket(AF_INET ,SOCK_DGRAM ,0);

9 // Iniciar a comunicacao NMEA e criar a estrutura de dados para
armazenar as informacoes

nmea_comm comm("127.0.0.1", 54325, 8);
11

// Rotina de tratamento e interpolacao dos dados
13 while (true){

...
15 // Saida da rotina: valores de xroll e xpitch

17
val0 = htonl (0 x00000082);

19 val1 = htonl ( *(( unsigned int *) &xroll) );
val2 = htonl ( *(( unsigned int *) &xpitch) );

21
memcpy ( &data[0], &val0 , sizeof(val0) );

23 memcpy ( &data[1], &val1 , sizeof(val1) );
memcpy ( &data[2], &val2 , sizeof(val2) );

25
// Garante loop com passo de 0.0166 segundos (60Hz)

27 waitbusy(dt, basetsclast , calfreq);
basetsclast=gettsc ();

29 status = send ( sock , (char *)data , 8* sizeof(float), 0 );
}

31
closesocket(socket);

33 WSACleanup ();
return 0;
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5.5 Especificações do fabricante para envio de dados

Os dados que devem ser enviados à plataforma Hexapod devem seguir as es-

pecificações contidas no manual do fabricante, Moog, Inc. A empresa especifica, por

exemplo, o formato dos dados de posição enviados a cada instante à plataforma, con-

forme a tabela 5.4 caso se opte por enviar o comprimento de cada uma das pernas do

mecanismo. Além disso, existe uma frequência específica para envio de dados, que

neste caso é de 60Hz, ou seja, um conjunto de dados a cada 0,0166s aproximada-

mente.

Palavra no. Dados Descrição Unidade Formato

0 MCW Palavra de comando - 32 bit unsigned int

1 length_ a Comprimento perna A m 32 bit float

2 length_ b Comprimento perna B m 32 bit float

3 length_ c Comprimento perna C m 32 bit float

4 length_ d Comprimento perna D m 32 bit float

5 length_ e Comprimento perna E m 32 bit float

6 length_ f Comprimento perna F m 32 bit float

7 - Em branco - -

Tabela 5.4: Especificações para envio de comprimento de atuadores à plataforma

Neste trabalho, optou-se por enviar diretamente os graus de liberdade (DOF)

à plataforma. Desta maneira, o padrão utilizado para os dados a serem enviados

seguem o padrão da tabela 5.5.

A fim de iniciar a comunicação com a plataforma Hexapod, o fabricante requer

uma série de comandos iniciais de configuração e definição de parâmetros. A rotina

init_ hex(int sock) foi desenvolvida para este fim. O primeiro parâmetro é relacionado

à configuração UDP com a plataforma, que é realizada através do IPv4 10.10.10.10

na porta 991. O código para esta configuração é mostrado abaixo:
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Palavra no. Dados Descrição Unidade Formato

0 MCW Palavra de comando - 32 bit unsigned int

1 value_ roll Roll rad 32 bit float

2 value_ pitch Pitch rad 32 bit float

3 value_ heave Heave m 32 bit float

4 value_ yaw Yaw rad 32 bit float

5 value_ surge Surge m 32 bit float

6 value_ sway Sway m 32 bit float

7 - Em branco - -

Tabela 5.5: Especificações para envio de graus de liberdade à plataforma

1 int init_hex (int sock){

3 unsigned int data [8];
int status;

5 struct sockaddr_in target;

7 memset ((char *)&target ,0,sizeof(target));
target.sin_family=AF_INET;

9 target.sin_addr.s_addr=inet_addr("10.10.10.10");// endereco IP de
destino

target.sin_port=htons (991); // porta de destino

Após isso, a plataforma requere uma série de comandos para sinalizar o início

de uma simulação. São eles:

• Reset: Usado para cancelar as configurações antigas e utilizar as configurações

atuais.

• Mode: Configurar o modo de envio de dados. No caso deste trabalho, o modo

escolhido é o DOF (graus de liberdade).

• Engage: Prepara a plataforma para o início de envio dos dados. A plataforma

ativa um timer próprio e espera o envio de dados por parte do software. Caso

os dados não sejam enviados, um erro de timeout ocorre e a plataforma é desli-

gada.

A seguir, segue o código com a continuação da rotina init_ hex() com estas

configurações:
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printf("Resetando o Hexapod \n");
2 data [0] = htonl(0 x000000A0); //RESET
status = send ( sock , (char *)data , 8* sizeof(float), 0 );

4 fprintf( stderr , "Status = %d (%s)\n", status , strerror (status) );
Sleep (5000);

6
printf("Configuracoes iniciais \n");

8 data [0] = htonl(0 x000000AA); // Degrees of Freedom Mode (DOF)
status = send ( sock , (char *)data , 8* sizeof(float), 0 );

10 fprintf( stderr , "Status = %d (%s)\n", status , strerror (status) );
Sleep (1000);

12

14 printf("Preparar para a simulacao ...\n");
data [0] = htonl(0 x000000B4); // ENGAGE

16 status = send ( sock , (char *)data , 8* sizeof(float), 0 );
fprintf( stderr , "Status = %d (%s)\n", status , strerror (status) );

18 Sleep (7800);

20 return status;
}

5.6 A rotina de temporização para Windows

Para garantir a temporização em Windows, foi desenvolvida uma rotina espe-

cial que garante, com a precisão requerida pela comunicação, a frequência de envio

de dados necessária para a comunicação (60Hz).

A rotina tem como principal método gettsc(), escrito em linguagem assembly.

Esta parte lê o registrador "RDTSC"que retorna o "Time Stamp Counter "presente nos

processadores Intel (a partir da geração Pentium). Este método é utilizado para contar

com precisão os ciclos de clock do processador.

Além deste método, foram desenvolvidos os métodos timelapse() e waitbusy().

O primeiro retorna o tempo que se passou desde a última volta que o método gettsc()

foi chamado e o segundo mantém a CPU ocupada durante um período de tempo pré-

definido.

Por fim, o método HRPCFreqCal() calcula a frequência do processador para

transformar os ciclos de clock em períodos de tempo.

O código com todos os métodos explicados acima é transcrito a seguir:
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1 #include <windows.h>
#include <stdio.h>

3
__forceinline ULONGLONG gettsc(void) {

5 ULONG hi,lo;
LARGE_INTEGER r;

7 __asm {
rdtsc

9 mov hi ,edx
mov lo ,eax

11 }
r.HighPart = hi;

13 r.LowPart = lo;
return r.QuadPart;

15 }

17 __forceinline double timelapse(ULONGLONG basetsc , double calfreq) {
ULONGLONG currenttsc;

19 currenttsc = gettsc ();
return ( currenttsc -basetsc )/calfreq;

21 }

23 __forceinline double waitbusy(double finaltime , ULONGLONG basetsc ,
double calfreq) {
double remainingtime;

25 remainingtime = finaltime - timelapse(basetsc ,calfreq);
do {

27 remainingtime = finaltime - timelapse(basetsc ,calfreq);
} while (remainingtime > 0);

29 return remainingtime;
}

31
double HRPCFreqCal(double CalInterval)

33 {
LARGE_INTEGER Freq_int64;

35 ULONGLONG basetsc ,curtsc;
FILETIME baseft ,curft;

37 ULONGLONG basest , curst;
ULONGLONG deltsc , delst;

39 Sleep (5);
basetsc = gettsc ();

41 GetSystemTimeAsFileTime (& baseft);
Sleep (( (DWORD) CalInterval )*1e3);

43 curtsc = gettsc ();
GetSystemTimeAsFileTime (& curft);

45 basest = (( ULONGLONG) baseft.dwHighDateTime) <<32 | (( ULONGLONG) baseft
.dwLowDateTime);

curst = (( ULONGLONG) curft.dwHighDateTime) <<32 | (( ULONGLONG) curft.
dwLowDateTime);

47 deltsc = curtsc - basetsc;
delst = curst - basest;

49 return (( double) deltsc) / ((( (double) delst)) / 1e7);
}

5.7 Validação da rotina de temporização

Para verificar se realmente a rotina de temporização estava garantindo a tem-

porização adequada, foi utilizado o software Wireshark [9]. O software Wireshark é
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um programa gratuito e de código aberto para análise do pacotes enviados através da

rede.

Utilizando este programa, é possível analisar todos os pacotes distribuídos na

rede à qual o computador que roda o Wireshark está conectado. Desta forma, utili-

zando filtros apropriados, pode-se separar apenas os pacotes destinados à plataforma

Hexapod e, desta maneira, verificar se o requisito temporal de envio de pacotes está

sendo respeitado.

Para isso, foram feitas diversas capturas de pacotes na rede. O log de uma

dessas capturas é mostrado na figura 5.1. Os filtros utilizados para separar essa cap-

tura dizem respeito ao endereço de IPv4 utilizado no programa desenvolvido neste tra-

baho para envio dos pacotes UDP ("10.10.10.11") e o IPv4 do destino ("10.10.10.10").

Desta forma, foram isolados os pacotes a serem analisados.

Figura 5.1: Visualização do log do Wireshark

Como a precisão do Wireshark nos timestamps fornecidos é da ordem de

microsegundo e a precisão necessária é da ordem de milissegundo, a ferramenta pode
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ser utilizada para fazer uma análise estatística da janela temporal entre o envio de um

pacote a outro para confirmar e validar a rotina de temporização como adequada à

esta aplicação.

A média (E(x)) dos intervalos de tempo entre o envio de um pacote e o envio

do próximo (xi) é dada por [10]:

E(x) =

N∑
i=1

xi

N
(5.1)

E o desvio padrão é calculado por:

σ(x) =

√√√√ N∑
i=1

(xi − E(x))2 (5.2)

Utilizando as fórmulas acima, a rotina de temporização forneceu os seguintes

parâmetro (com N = 1253):

• Média aritmética: E(x) = 16, 601ms

• Desvio padrão: σ(x) = 0, 031ms

De acordo com as especificações do fabricante da plataforma, a precisão ne-

cessária é de décimos de milissegundo e a precisão obtida com a rotina de tempori-

zação deste trabalho é de centésimos de milissegundo. Portanto, a rotina é adequada

e satisfaz os requisitos necessários.
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Capítulo 6

Comunicação com o software TPN

6.1 O simulador do TPN

O laboratório Tanque de Provas Numérico (TPN) da Escola Politécnica desen-

volveu nos últimos anos um simulador, em uma parceria com a Petrobras, capaz de

reproduzir operações offshore como o offloading de plataformas da própria Petrobras.

Para a representação dos corpos, um modelo dinâmico com 6 graus de li-

berdade é utilizado. Este modelo inclui forças hidrodinâmicas, aerodinâmicas e de

ondas. O simulador realiza os cálculos utilizando os algoritmos de DP ("Dynamic

Positioning"), que considera a eficiência e a dinâmica de cada um dos propulsores

presentes no corpo flutuante simulado [11].

O simulador é dividido em duas partes principais que se intercomunicam via

socket e protocolo "http". A primeira é o módulo de cálculo, integrando as equações

diferenciais dos modelos matemáticos presentes no código numérico do TPN que vem

sendo desenvolvido e aprimorado há 15 anos.

A arquitetura do simulador representando as interfaces de comunicação é

mostrada na figura 6.1

Já o módulo de visualização visa a garantia de imersão do operador dos instru-

mentos desenvolvidos. Esse processo é baseado na ferramenta Unity3D, que permite

a modelagem de diversos cenários com qualidade gráfica muito boa e facilidade de im-

plementação. As figuras 6.2 e 6.3 mostram exemplos de visualização gráfica gerada

pelo software TPN.

Para aumentar a sensação de imersão no ambiente de uma ponte de comando

de um corpo flutuante, foram desenvolvidos painéis de controle capazes de mostrar

todos os instrumentos relacionados, como informação a respeito do DP, sistemas de

posicionamento, bússola e estado dos propulsores, entre outros. Este painel foi de-

senvolvido em um projeto separado e comunica com o software também via socket
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Figura 6.1: Arquitetura do simulador TPN

Figura 6.2: Exemplo de visualização gerada através do software TPN

Figura 6.3: Outro exemplo de visualização
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de rede. A figura 6.4 mostra o joystick desenvolvido no TPN para comando dos pro-

pulsores dos corpos flutuantes simulados, já a figura 6.5 mostra o painel de controle

desenvolvido no TPN.

Figura 6.4: Joystick desenvolvido no TPN

Figura 6.5: Painel de controle desenvolvido no TPN

Por fim, uma simulação da ponte de comando desenvolvida no TPN, com

diversas telas de visualização e o painel de controle mostrado nas figuras anteriores

é mostrado em 6.6.
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Figura 6.6: Simulação da ponte de comando desenvolvida

6.2 O protocolo NMEA

O protocolo NMEA é um conjunto de especificações criada pela "National Ma-

rine Electronics Association" muito utilizado na indústria naval. Atualmente, a versão

atual é o padrão NMEA 0183, que vem sendo substituído pelo padrão NMEA 2000.

O padrão elétrico utilizado pelo NMEA é o RS-422. O NMEA 0183 utiliza

comunicação serial com codificação ASCII e normalmente a mensagem pode ser en-

viada a partir de um dispositivo para diversos outros ao mesmo tempo ("multicast").

A camada de Data Link do NMEA tem como padrão 8 bits de dado, 1 bit de

paridade e não apresenta mecanismos de paridade ou de handshake.

Na camada de aplicação, vale o seguinte conjunto de regras:

1. A mensagem NMEA padrão deve iniciar com um sinal "$".

2. Após o "$", os dois próximos caracteres ASCII identificam o emissor.

3. 3 caracteres indicando o tipo de mensagem enviada.

4. Após a identificação da mensagem e do emissor, vem os campos de dados,

separados por vírgulas.

5. Opcionalmente, pode-se utilizar um mecanismo de checksum ao final da mensa-

gem

6. A mensagem termina com uma nova linha (comandos deCarriage Return e Line

Feed).

Um exemplo de mensagem enviada pelo TPN utilizando protocolo NMEA é:
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1
$S5WSD ,10 ,11.496 ,260.086*73

3 $S5PRC ,10 ,1 ,10.013 ,90.000 ,0.963 ,225.000 ,0.005 , ON*1d
$S5PRC ,10 ,2 ,83.466 ,360.000 , -6.399 ,243.000 ,0.621 ,ON*93

5 $S5PRC ,10 ,3 ,10.578 ,358.997 , -0.811 ,243.000 ,0.644 ,ON*57
$S5PRC ,10 ,4 ,0.312 ,90.000 , -0.034 ,225.000 , -0.000 ,ON*a6

7 $S5PRC ,10 ,5 ,332.748 ,0.000 , -24.267 ,54.600 ,2.008 ,ON*3a
$S5PRD ,10 ,1 ,10.013 ,90.000 ,0.963 ,225.000 ,0.005 , ON*ab

9 $S5PRD ,10 ,2 ,83.466 ,360.000 , -6.399 ,243.000 ,0.621 ,ON*ce
$S5PRD ,10 ,3 ,10.578 ,358.997 , -0.811 ,243.000 ,0.644 ,ON*0a

11 $S5PRD ,10 ,4 ,0.312 ,90.000 , -0.034 ,225.000 , -0.000 ,ON*44
$S5PRD ,10 ,5 ,332.748 ,0.000 , -24.267 ,54.600 ,2.008 ,ON*d8

6.3 Programa de recebimento de dados do TPN usando

NMEA

Para a comunicação com o software TPN foi desenvolvida uma classe so-

mente com este propósito. A classe possui métodos para analisar as mensagens

NMEA enviadas pelo software e armazená-las em uma estrutura de dados chama

vessel. O código da classe é reportado abaixo:
1
nmea_comm :: nmea_comm(std:: string p_ip , int p_port , int p_vessel_id) :

3 comm(p_ip , p_port)
{

5 vessel.id = p_vessel_id;

7 commands["PTDPP"] = new nmea_ptdpp(p_vessel_id ,
vessel.x , vessel.y , vessel.z ,

9 vessel.roll , vessel.pitch , vessel.yaw) ;
commands["PTDPV"] = new nmea_ptdpv(p_vessel_id ,

11 vessel.vx , vessel.vy , vessel.vz ,
vessel.vroll , vessel.vpitch , vessel.vyaw);

13 commands["PTDPA"] = new nmea_ptdpa(p_vessel_id ,
vessel.ax , vessel.ay , vessel.az ,

15 vessel.aroll , vessel.apitch , vessel.ayaw);
}

17
nmea_comm :: position nmea_comm ::get()

19 {
vessel.new_data = false;

21 std::vector <std::string > result;
while (!( result = comm.get()).empty()) {

23 if(commands.find(result [0]) != commands.end()) {
try {

25 commands[result [0]]->exec(result);
vessel.new_data = true;

27 } catch(int) {
}

29 }
}

31 return vessel;
}

33
nmea_comm ::~ nmea_comm ()

35 {
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}
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Capítulo 7

Tratamento dos dados recebidos para
envio à plataforma

7.1 O problema das diferenças de frequências de rece-

bimento e envio

Conforme descrito na introdução deste trabalho, são necessárias duas frequên-

cias de trabalho distintas para comunicação. A primeira, dada pelo período de amos-

tragem Ta1, depende do software TPN. A configuração do TPN especifica o período

com que as posições do navio ensaiado serão disponibilizadas para envio, usando

protocolo NMEA, para o exterior.

Já para a plataforma Hexapod é necessário um envio de dados à uma frequên-

cia de 60Hz, ou seja, um período de amostragem de Ta2 = 0.0166s. Como se pode no-

tar, o fato de as frequências de envio e recebimento de dados serem distintas implica

na necessidade de tratar os dados a serem enviados. Como Ta2 < Ta1, o programa

desenvolvido neste trabalho deve criar um algoritmo para calcular os dados a serem

enviados à plataforma enquanto a nova posição não é recebida do TPN.

Para este fim, foram testados diversos algoritmos que serão descritos a seguir.

Cada um com suas vantagens e desvantagens que serão discutidas nas próximas

seções. Após uma investigação de cada um desses algoritmos, foi feita a escolha

daquele que melhor se adapta ao escopo deste trabalho.

7.2 O Zero Order Hold

O Zero Order Hold é o algoritmo mais simples discutido aqui. Basicamente, se

trata de receber uma posição do TPN e, enquanto uma nova posição não é enviada,
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manter a saída constante. Assim que um novo dado chega, a saída muda imediata-

mente para este novo valor.

Este algoritmo tem como grande vantagem a sua simplicidade. Ele pode ser

implementado utilizando poucas linhas de código e portanto pode ser ideal para siste-

mas onde há muito pouco tempo de processamento livre para se executar os cálculos

ou ainda quando não há memória para se armazenar os dados gerados anteriormente.

Como grandes desvantagens, este algoritmo não utiliza os dados passados

para efetuar qualquer tipo de previsão a respeito dos novos dados a serem produzidos.

Isto gera grandes descontinuidades na série temporal enviada. Além de o erro entre a

posição real e a posição enviada para a plataforma serem normalmente muito grandes,

fora no momento em que a nova posição é enviada - neste caso, a posição enviada e

a real são iguais.

Neste trabalho, os dados são recebidos com uma frequência baixa: 2Hz, ou

seja, um período de 0, 5s e devem ser enviadas a 60Hz ou 0, 0166s. É inaceitável

para o movimento da plataforma que existam descontinuidades tão grandes como as

presentes utilizando este algoritmo. Portanto, é necessário algum tipo de previsão

a respeito dos novos dados a serem enviados. Estes algoritmos serão discutidos a

seguir.

Os gráficos obtidos com este algoritmo são mostrados a seguir. A figura 7.1

mostra o movimento de Pitch e a figura 7.2 mostra o movimento de Roll geradas a

partir do algoritmo de Zero Order Hold.

Figura 7.1: Pitch obtido com Zero Order Hold

O código utilizado para se fazer os testes utilizando o Zero Order Hold é
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Figura 7.2: Roll obtido com Zero Order Hold

mostrado abaixo. Notar que a função comm.get() acessa o struct de dados que

se comunica ao TPN. Caso os dados tenham sido atualizados, a variável booleana

pos.new_data recebe o valor true. E assim que as posições são atualizadas no soft-

ware, este velor é mudado para false.
1
while (true){

3 pos = comm.get();

5 // Rampa inicial para atingir altura de Heave
if (t<T){

7 z = (t/T)*( -0.2);
}

9
else if (pos.new_data){

11 // atualiza valor do roll
xreal [0] = pos.roll;

13
// atualiza valor do pitch

15 xreal [1] = pos.pitch;

17 pos.new_data = false;
}

19
// interpolacao dos dados:

21 for (i=0; i<2; i++){
// algoritmo de zero order hold

23 x[i] = xreal[i];

25 // Controle de aceleracoes , velocidades e posicoes da plataforma

27 if (fabs(ax[1] > AMAX || fabs(vx[1] > VMAX || fabs(x[i]) > PMAX){
printf ("Excedidos os limites de seguranca da plataforma");

29 return -1;
}

31 }
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33

35 }

7.3 extrapolação dos dados recebidos em ingresso usando

First Order Hold

Supondo, inicialmente, que as série temporais de todos graus de liberdade

do navio que serão reproduzidas possam ser representadas através de uma onda

senoidal do tipo:

x(t) = Asen

(
2π

T
t

)
(7.1)

Onde:

A é a amplitude da onda senoidal;

T é o período da onda senoidal;

t é o tempo;

x(t) é a série temporal de um grau de liberdade genérico.

Amostrando a série temporal descrita por 7.1 em intervalos de tempo Ta1,

obtemos a seguinte série discretizada:

yk(kTa1) = Asen

(
2π

T
kTa1

)
(7.2)

O método de First Order Hold consiste em calcular o primeiro termo da ex-

pansão em séries de Taylor da série temporal amostrada, ou simplesmente calcular a

reta que une os dois últimos pontos amostrados, conforme a equação 7.3, obtendo o

coeficiente angular m.

m =
yk − yk−1

Ta1
(7.3)

Os dados a serem enviados a uma frequência mais elevada, y′(kn + j) carac-

terizada pelo período de amostragem Ta2, são então calculados utilizando o valor m,

através da equação 7.4:

y′kn+j+1 = y′kn+j +mTa2 (7.4)

Sendo que o primeiro termo de cada extrapolação, y′kn, é calculado através do

último dado recebido de forma que y′kn = yk, onde n é a relação entre os perídos de

amostragem, tal que n = Ta1
Ta2

.
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Para simulação de uma amostragem utilizando o First Order Hold, o código

abaixo foi utilizado. Os gráficos obtidos demonstram o comportamento deste tipo de

simulação. Em especial, deve-se notar as descontinuidades que ocorrem quando um

novo dado é recebido.
1
while (true){

3 pos = comm.get();

5 // Rampa inicial para atingir altura de Heave
if (t<T){

7 z = (t/T)*( -0.2);
}

9
else if (pos.new_data){

11 // calcula o coeficiente angular m
mx[0] = (pos.roll - x[0])/Ta1;

13 mx[1] = (pos.pitch - x[1])/Ta1;

15 // atualiza valores de roll e pitch
x[0] = pos.roll;

17 x[1] = pos.pitch;

19 pos.new_data = false;
}

21
// interpolacao dos dados:

23 for (i=0; i<2; i++){
// algoritmo de first order hold

25 x[i] = x[i] + mx[i]*dt;

27 // Controle de aceleracoes , velocidades e posicoes da plataforma

29 if (fabs(ax[1] > AMAX || fabs(vx[1] > VMAX || fabs(x[i]) > PMAX){
printf ("Excedidos os limites de seguranca da plataforma");

31 return -1;
}

33 }

Os resultados da simulação pode ser vistos nas figuras 7.3 e 7.4. As des-

continuidades apresentadas são fatores que depreciam a qualidade do movimento da

plataforma Hexapod, pois representam desconforto, na forma de "trancos"durante o

movimento. Para resolver este problema, o método foi alterado de maneira a retirar as

descontinuidades obtidas, conforme descrito na próxima seção.

7.4 O First Order Hold modificado

Para retirar as descontinuidades obtidas utilizando o método FOH, o algoritmo

desenvolvido consiste no cálculo de um resíduo r, que mede o erro entre o último

ponto enviado com a frequência de amostragem mais elevada e o novo dado recebido,

calculado através da equação 7.5.
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Figura 7.3: Pitch obtido com First Order Hold

Figura 7.4: Roll obtido com First Order Hold

r = yk − y′kn (7.5)

Ao invés de corrigir este resíduo imediatamente, como no caso do método

FOH, pode-se amortizar a redução do resíduo r durante o próximo período de extra-

polação de maneira que, ao calcular o valor y′(k+1)n, o resíduo r tenha desaparecido.

Ou seja:

y′(k+1)n = y′kn +mnTa2 + r (7.6)
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Portanto, os passos intermediários são calculados através da seguinte equa-

ção:

y′kn+j+1 = y′kn+j +mTa2 +
r

n
(7.7)

Para este cálculo, o seguinte código foi utilizado:
while (true){

2 pos = comm.get();

4 // Rampa inicial para atingir altura de Heave
if (t<T){

6 z = (t/T)*( -0.2);
}

8
else if (pos.new_data){

10 // calcula o coeficiente angular m
mx[0] = (pos.roll - areal [0])/Ta1;

12 mx[1] = (pos.pitch - areal [1])/Ta1;

14 // atualiza valores de roll e pitch
xreal [0]= pos.roll;

16 xreal [1] = pos.pitch;

18 // calcula os residuos
rx[0] = xreal [0] - x[0];

20 rx[1] = xreal [1] - x[1];

22 pos.new_data = false;
}

24
// interpolacao dos dados:

26 for (i=0; i<2; i++){
// algoritmo de first order hold com residuos

28 x[i] = x[i] + mx[i]*dt + rx[i]/n;

30 // Controle de aceleracoes , velocidades e posicoes da plataforma

32 if (fabs(ax[1] > AMAX || fabs(vx[1] > VMAX || fabs(x[i]) > PMAX){
printf ("Excedidos os limites de seguranca da plataforma");

34 return -1;
}

36 }

Os resultados da simulação podem ser vistos nas figuras 7.5 e 7.6. As indese-

jadas continuidades desaparecem, mas o movimento ainda apresenta descontinuida-

des na sua primeira derivada, como pode ser observado pelas "pontas"que aparecem

nos gráficos de movimento.

7.5 Algoritmo de integração das velocidades e amorti-

zação dos resíduos de posição

O próximo algoritmo considerado baseia-se no fato de a informação gerada a

partir do software TPN não dizer respeito apenas à posição do navio simulado, mas
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Figura 7.5: Pitch obtido com First Order Hold modificado

Figura 7.6: Roll obtido com First Order Hold modificado

também às velocidades e acelerações do mesmo. Essas informações não estavam

sendo utilizadas anteriormente, mas podem ser de grande valia para a extrapolação

dos dados.

Este algoritmo consiste em prever a posição do navio utilizando o algoritmo

de Zero Order Hold para a velocidade, isto é, para cada novo conjunto de dados rece-

bidos do TPN, extrai-se a velocidade, que será constante até que os próximos dados

cheguem. Esta velocidade será integrada em tempos discretos para a obtenção das

novas posições. Além disso, para evitar as descontinuidades indesejadas, é utilizado
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o artifício de amortização dos resíduos como no algoritmo anterior.

A grande vantagem deste algoritmo é que, ao invés de se calcular o coefici-

ente angular utilizando-se os dois últimos valores de posição - que nada mais é que

a velocidade média durante o período, utiliza-se uma medida mais precisa para a ex-

trapolação: a velocidade instantânea obtida diretamente através da saída do software

TPN.

Como a posição é a integral da velocidade, conforme 7.8:

x(t) =

∫
v(t)dt (7.8)

Temos que:

x(i+ 1) = x(i) + v(i)∆t+ rx(i)/n (7.9)

Onde v(i) é o último dado de velocidade recebido e rx(i)/n é o termo refe-

rente à amortização do erro de posição calculado quando o último dado de posição foi

recebido.

O código para implementação deste algoritmo é mostrado abaixo:
while (true){

2 pos = comm.get();

4 // Rampa inicial para atingir altura de Heave
if (t<T){

6 z = (t/T)*( -0.2);
}

8
else if (pos.new_data){

10

12 // atualiza valores de roll e pitch
xreal [0] = pos.roll;

14 xreal [1] = pos.pitch;

16 // atualiza as velocidades
vx[0] = pos.vroll;

18 vx[1] = pos.vpitch;

20 // calcula os residuos
rx[0] = xreal [0] - x[0];

22 rx[1] = xreal [1] - x[1];

24 pos.new_data = false;
}

26
// interpolacao dos dados:

28 for (i=0; i<2; i++){
// algoritmo de integracao das velocidades

30 x[i] = x[i] + vx[i]*dt + rx[n];

32 // Controle de aceleracoes , velocidades e posicoes da plataforma

34 if (fabs(ax[1] > AMAX || fabs(vx[1] > VMAX || fabs(x[i]) > PMAX){
printf ("Excedidos os limites de seguranca da plataforma");

36 return -1;
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}
38 }

O resultado das simulações com estes algoritmos pode ser visto nas figuras

7.7 (Pitch) e 7.8 (Roll). Os resultados já são evidentemente melhores, mas os próxi-

mos algoritmos mostram que ainda existe margem para melhora.

Figura 7.7: Pitch obtido com algoritmo de integração de velocidades

Figura 7.8: Roll obtido com First Order Hold modificado
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7.6 Algortimo de integração das acelerações recebi-

das

Uma continuidade do algoritmo anterior é, além de utilizar as velocidades re-

cebidas do software TPN, utilizar também as acelerações. Desta forma, no período

de extrapolação, as velocidades são obtidas pela integração da aceleração e a posi-

ção pela integral dupla da aceleração. A aceleração é mantida constante através do

algoritmo de Zero Order Hold. A cada novo recebimento de dados, a aceleração e a

velocidade são atualizadas. A posição ainda se utiliza do artifício de amortização dos

resíduos para evitar as descontinuidades.

Como a velocidade é calculada como a integral da aceleração, conforme ??:

v(t) =

∫
a(t)dt (7.10)

A posição pode ser calculada por:

x(t) =

∫ ∫
a(t)dt (7.11)

Que na forma discretizada torna-se:

x(i+ 1) = x(i) + v(i)∆t+
a(i)(∆t)2

2
+ rx/n (7.12)

E,

v(i+ 1) = v(i) + a(i)∆t (7.13)

O código utlizado para este método é mostrado abaixo:
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1 while (true){
pos = comm.get();

3
// Rampa inicial para atingir altura de Heave

5 if (t<T){
z = (t/T)*( -0.2);

7 }

9 else if (pos.new_data){

11
// atualiza valores de roll e pitch

13 xreal [0] = pos.roll;
xreal [1] = pos.pitch;

15
// atualiza as velocidades

17 vx[0] = pos.vroll;
vx[1] = pos.vpitch;

19
// atualiza as aceleracoes

21 ax[0] = pos.aroll;
ax[1] = pos.apitch;

23
// calcula os residuos

25 rx[0] = xreal [0] - x[0];
rx[1] = xreal [1] - x[1];

27
pos.new_data = false;

29 }

31 // interpolacao dos dados:
for (i=0; i<2; i++){

33 // algoritmo de integracao das aceleracoes
x[i] = x[i] + vx[i]*dt + ax[i]*dt*dt/2 + rx[n];

35 v[i] = v[i] + ax[i]*dt;

37 // Controle de aceleracoes , velocidades e posicoes da plataforma

39 if (fabs(ax[1] > AMAX || fabs(vx[1] > VMAX || fabs(x[i]) > PMAX){
printf ("Excedidos os limites de seguranca da plataforma");

41 return -1;
}

43 }

Os resultados obtidos com este algoritmo são reportados nas figuras 7.9 e

7.10. Também são mostradas as velocidades angulares de Pitch e Roll nas figuras

7.11 e 7.12. Nota-se que agora a velocidade utilizada não é mais constante, mas

obtida pela integração das velocidades recebidas. Desta maneira, a posição, obtida

pela integração da velocidade reproduz ainda mais fielmente o movimento simulado

através do TPN, mesmo com a baixa frequência em que os dados são recebidos.

7.7 Utilizando o Fisrt Order Hold para as acelerações

Finalmente, uma última modificação que pode ser feita no algoritmo é utili-

zar o algoritmo de First Order Hold aplicado às acelerações recebidas e, com essas
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Figura 7.9: Pitch obtido com algoritmo de integração da aceleração

Figura 7.10: Roll obtido com algoritmo de integração da aceleração

acelerações, calcular as velocidades e posições através de integração.

Para isto, deve-se calcular o coeficiente angular da reta que une os dois últi-

mos valores recebidos de aceleração, conforme 7.14 e, a cada passo de extrapolação

calcular a nova aceleração utilizando este coeficiente angular, conforme 7.15.

ma(t) =
ak − ak−1

∆t1
(7.14)

a(t) = ma(t) ∗ t+ a0 (7.15)
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Figura 7.11: Velocidade angular de Pitch obtido com algoritmo de integração da aceleração

Figura 7.12: Velocidade angular de Roll obtido com algoritmo de integração da aceleração

Então a velocidade pode ser calculada por:

v(t) =

∫
a(t)dt (7.16)

Ou, na forma discretizada:

v(i+ 1) = v(i) + a(i)∆t+ma(i)
(∆t)2

2
(7.17)

E a posição pode ser calculada por:
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x(i+ 1) = x(i) + v(i)∆t+ a(i)
(∆t)2

2
+ma(i)

(∆t)3

6
+ rx(i)/n (7.18)

O código que implementa este método é mostrado abaixo:
while (true){

2 pos = comm.get();

4 // Rampa inicial para atingir altura de Heave
if (t<T){

6 z = (t/T)*( -0.2);
}

8
else if (pos.new_data){

10
// calcula o coeficiente angular da aceleracao

12 ma[0] = (pos.aroll - areal [0])/Ta1;
ma[1] = (pos.apitch - areal [1])/Ta1;

14
// atualiza valores de roll e pitch

16 xreal [0] = pos.roll;
xreal [1] = pos.pitch;

18
// atualiza as velocidades

20 vx[0] = pos.vroll;
vx[1] = pos.vpitch;

22
// atualiza as aceleracoes

24 ax[0] = pos.aroll; areal [0]= pos.aroll;
ax[1] = pos.apitch; areal [1] = pos.apitch;

26
// calcula os residuos

28 rx[0] = xreal [0] - x[0];
rx[1] = xreal [1] - x[1];

30
pos.new_data = false;

32 }

34 // interpolacao dos dados:
for (i=0; i<2; i++){

36 // algoritmo de integracao das aceleracoes
x[i] = x[i] + vx[i]*dt + ax[i]*dt*dt/2 + ma[i]*dt*dt*dt/6 + rx[n];

38 v[i] = v[i] + ax[i]*dt + ma[i]*dt*dt/2;
ax[i] = ax[i] + ma[i]*dt;

40
// Controle de aceleracoes , velocidades e posicoes da plataforma

42
if (fabs(ax[1] > AMAX || fabs(vx[1] > VMAX || fabs(x[i]) > PMAX){

44 printf ("Excedidos os limites de seguranca da plataforma");
return -1;

46 }
}

Os resultados das simulações com este algoritmo são mostrados nas figuras

7.13, 7.14, 7.15, 7.16, 7.17 e 7.18.
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Figura 7.13: Pitch obtido com algoritmo de First Order Hold aplicado à aceleração

Figura 7.14: Roll obtido com algoritmo de First Order Hold aplicado à aceleração
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Figura 7.15: Velocidade angular de Pitch obtido com algoritmo de First Order Hold aplicado à aceleração

Figura 7.16: Velocidade angular de Roll obtido com algoritmo de First Order Hold aplicado à aceleração
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Figura 7.17: Aceleração angular de Pitch obtido com algoritmo de First Order Hold aplicado à acelera-

ção

Figura 7.18: Aceleração angular de Pitch obtido com algoritmo de First Order Hold aplicado à acelera-

ção
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Capítulo 8

Resultados com o algoritmo
escolhido

8.1 Escolha do algoritmo apropriado

A escolha do algoritmo apropriado para movimentação da plataforma é ba-

seada em dois requisitos principais: o tempo de cálculo para não exceder a janela

prevista para o envio de dados à plataforma e, cumprindo o primeiro requisito, aquele

que reproduza o mais fielmente possível o movimento gerado pelos clusters do TPN.

Além dos algoritmos expostos nas seções precedentes, outros algoritmos de

extrapolação também foram testados. Em especial, é importante ressaltar que o mé-

todo de amortização dos resíduos, utilizado a partir do algoritmo de First Order Hold

modificado do capítulo anterior foi testado também para a velocidade. No entanto, a

integração desse termo residual tornava as séries temporais de velocidade simuladas

extremamente instáveis e as novas posições divergiam.

Desta forma, foram descartados algoritmos com a correção proposta na velo-

cidade ou na aceleração e a solução selecionada deveria conter apenas a correção

residual na posição para evitar efeitos de deriva.

Após isso, foi feita uma análise de quanto tempo a CPU levava para executar

os cálculos dos diversos algoritmos e foi constatado que as rotinas para construção

e envio de mensagens UDP era muito mais custosa computacionalmente que o algo-

ritmo em si. Contudo, mesmo adicionando os tempos construção e envio de mensa-

gem via UDP, recepção de mensagens via NMEA e cálculo dos algoritmos, o tempo

livre da CPU ainda era muito grande, provando que este requisito de projeto poderia

ser tranquilamente satisfeito, ainda que os cálculos se tornassem mais complexos.

A temporização a ser respeitada era de 16,6ms para efetuar todos os cálcu-

los descritos acima. No entanto, o algoritmo mais custoso computacionalmente - o
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de integração das velocidades com cálculo do resíduo de posição - revelou uma mé-

dia de tempo de cálculo (feita utilizando a rotina de temporização desenvolvida) de:

E(xint_vel) = 0, 090ms com um desvio padrão de σint_vel = 0.33ms e com o maior valor

encontrado na simulação de max{xint_vel} = 3, 471ms.

Um resumo da análise estatística feita com os algoritmos é mostrada na tabela

abaixo (espaço amostral de aproximadamente 10.000 amostras).

Método Média (µs) Desvio Padrão (µs) Maior Valor (µs)

ZOH 86,16 332,9 2679

FOH 86,91 330,7 2475

FOH modificado 87,0 332,2 2874

Integração velocidades 89,8 339,8 2949

Integração acelerações 90,4 340,5 3392

FOH na aceleração 89,5 338,0 3471

Tabela 8.1: Análise estatística da temporização dos algoritmos de extrapolação

Desta forma, com todos os algoritmos passando pelo teste de tempo de exe-

cução, a escolha fica reduzida aquele com melhor reprodução do movimento simulado

nos clusters do TPN. De acordo com os gráficos expostos anteriormente neste capí-

tulo, a escolha é o algoritmo de First Order Hold aplicado às acelerações recebidas

do TPN.

Uma comparação entre os algoritmos escolhidos pode ser vista na tabela ??,

em especial, pode-se notar o grau das funções que interpolam as séries de posição,

velocidade e aceleração utlizadas.

8.2 Análise dos algoritmos no espectro da frequência

Nesta seção, será mostrada a análise dos algoritmos no domínio da frequên-

cia. A figura 8.1 mostra o espectro de frequência da série contínua original de uma

senoide (em azul) e do algoritmo de Zero Order Hold. Pode-se notar que o algoritmo

de extrapolação adiciona um ruído na frequência de recebimento dos dados (2Hz) e

seus múltiplos inteiros. O objetivo dos algoritmos desenvolvidos aqui, então, pode ser

interpretado como a tentativa de reduzir ao máximo este ruído.

As figuras seguintes 8.2, 8.3 e 8.4 mostram a evolução dos algoritmos, redu-

zindo cada vez mais o ruído indesejado e se aproximando muito do espectro obtido
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Método Continuidade x Grau x Grau ẋ Grau ẍ Satisfaz tempo?

ZOH Não 0 Não usa Não usa Sim

FOH Não 1 Não usa Não usa Sim

FOH modificado Sim 1 Não usa Não usa Sim

Integração velocidades Sim 1 0 Não usa Sim

Integração acelerações Sim 2 1 0 Sim

FOH na aceleração Sim 3 2 1 Sim

Tabela 8.2: Análise comparativa entre os algoritmos descritos

Figura 8.1: Comparação entre série senoidal e extrapolação com Zero Order Hold

para a série temporal contínua inicial.

8.3 Simulação do algoritmo escolhido na plataforma

Nesta seção, são reproduzidas algumas imagens da simulação feita no labo-

ratório Tanque de Provas Numérico (TPN) da Escola Politécnica da USP. O autor do

trabalho testou as séries temporais enviadas e os requisitos de temporização, segu-

rança e qualidade do movimento.

As figuras 8.5 e 8.6 abaixo mostram os testes feitos:
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Figura 8.2: Comparação entre extrapolação com Zero Order Hold e com First Order Hold

Figura 8.3: Comparação entre First Order Hold Modificado e Integração de Velocidades
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Figura 8.4: Comparação entre integração de Acelerações e algoritmo final

Figura 8.5: Fotografia de instante de máxima rolagem da plataforma em simulação
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Figura 8.6: Teste da plataforma com passageiro embarcado
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Capítulo 9

Conclusão

Este trabalho de conclusão de curso foi desenvolvido no laboratório Tanque

de Provas Numérico (TPN) da Escola Politécnica da USP. O objetivo foi criar um am-

biente imersivo de simulação capaz de integrar duas funcionalidades já desenvolvidas

no laboratório: a simulação de processos complexos de movimentação de corpos

flutuantes sob diversas condições climáticas e a geração de uma visualização da mo-

vimentação destes corpos flutuantes simulados.

Para isto, foi adquirida uma plataforma do tipo Hexapod capaz de mover-se

em seis graus de liberdade. O trabalho, então, era o de criar duas interfaces: uma

com a plataforma e outro com o software desenvolvido e desenvolver um software

intermediário para o tratamento dos dados recebidos do TPN para envio à plataforma.

A interface com o software TPN requeria uma comunicação com protocolo

NMEA a uma frequência de 2Hz. Já a comunicação com a plataforma requeria co-

municação socket usando protocolo UDP e uma frequência de 60Hz. A diferença nas

frequências de envio e recebimento criou a necessidade de se desenvolver um algo-

ritmo de extrapolação da série temporal recebido e nova discretização para envio à

plataforma, com o menor prejuízo possível para a qualidade da série temporal.

Para este fim, foram testados diversos algoritmos de extrapolação, iniciando

por algoritmos mais simples como o Zero Order Hold e o First Order Hold até algorit-

mos mais complexos, que calculavam o resíduo entre a posição esperada e a posição

atual e reduziam este resíduo nos próximos passos de simulação além de integrar a

aceleração e velocidades obtidas para extrapolação fiel ao movimento esperado na

janela de tempo entre o recebimento de novos dados.

A escolha do algoritmo foi baseada no tempo de cálculo de cada um e na

capacidade de reproduzir o movimento real do corpo flutuante obtido através da simu-

lação nos clusters do TPN. Foi feito um quadro comparativo entre os algoritmos e uma

análise estatística do tempo de execução de cada um deles para auxiliar a decisão
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sobre qual algoritmo era mais adaptado ao problema descrito neste trabalho.

Para o cálculo da janela temporal entre o envio dos dados, foi desenvolvida

uma rotina de temporização especial. Esta rotina é capaz de manter a CPU ocu-

pada e aguardar, com boa precisão, o momento para envio dos dados. Uma simples

análise estatística foi realizada para mostrar que a rotina era eficiente e atingia os

requisitos pré-estabelecidos, mesmo utilizando um sistema não desenvolvido especi-

almente para aplicações real time, o Windows 7. Para obter os dados de tempo de

envio, foi utilizado o analisador de protocolos de rede Wireshark.

Finalmente, o envio de dados foi realizado utilizando o protocolo UDP, sim-

ples e leve, ideal para situações nas quais o respeito a requisitos temporais é muito

importante e onde a perda de um pacote não afeta drasticamente a performance do

sistema, já que o protocolo não é 100% confiável.

Os principais trechos de códigos utilizados foram transcritos neste relatório.

Os resultados obtidos foram muito bons. A série temporal gerada atingia os pré-

requisitos estabelecidos nos capítulos iniciais deste trabalho, o movimento final gerado

na plataforma foi muito semelhante a aquele produzido pelas simulações nos clusters

do TPN apesar da baixa frequência de envio de dados, provando que os algoritmos

de extrapolação foram eficientes.



63

Capítulo 10

Trabalhos futuros

Alguns tópicos podem ser melhorados em trabalhos futuros em continuação a

este trabalho de conclusão de curso, eles serão discutidos abaixo:

• Troca de sistema operativo: Neste trabalho, foi usado um sistema que não foi

desenvolvido especialmente para sistemas real-time, o Windows. Na tentativa de

sanar as deficiências do Windows em relação à temporização, foi desenvolvida

uma rotina especial que utiliza código em assembly para comunicar com o clock

do processador. Caso um sistema operacional mais adaptado à aplicações real-

time fosse utilizada, a temporização poderia ser garantida com maior segurança

e maior precisão.

• Estudo de algoritmos alternativos: Outros algoritmos de extrapolação pode-

riam ser desenvolvidos. O foco principal poderia ser a garantia de continuidade

tanto na posição quanto na velocidade e na aceleração da série temporal a ser

enviada à plataforma.

• Aplicação das técnicas para outros graus de liberdade: Seguindo a mesma

técnica, outros graus de liberdade também podem ser reproduzidos pela plata-

forma. Um cuidado especial deve ser tomado para a plataforma Hexapod, pois

com altos valores de Heave, o curso para Roll e Pitch fica sensivelmente redu-

zido.
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